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Superficial(two-dimensional) crack patterns appear when a thin layer of material elastically attached to a
substrate contracts. We study numerically the maturation process undergone by these crack patterns when they
are allowed to adapt in order to reduce its energy. The process models the evolution in depth of cracks in
geological formations and in starch samples(“columnar jointing”), and also the time evolution(over thousands
of years) of crack patterns in frozen soils. We observe an evolution towards a polygonal pattern that consists
of a fixed distribution of polygons with mainly five, six, and seven sides. They compare very well with known
experimental examples. The evolution of one of these “mature” patterns upon reduction of the degree of
contraction is also considered. We find that the pattern adapts by closing some of the cracks and rearranging
those in the immediate neighborhood. This produces a change of the mean size of the polygons, but remarkably
no changes of the statistical properties of the pattern. Comparison with the same behavior recently observed in
starch samples is presented.
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I. INTRODUCTION

Consider a thin layer of a solid material elastically at-
tached to a substrate. If the material contracts(or the sub-
strate expands), elastic stresses appear in it. When these
stresses are sufficiently high, cracks can appear in the mate-
rial, giving rise to a fragmentation process. Well known ex-
amples of this phenomenon are cracking on mud and paints.
In these cases the water evaporation produces the contraction
of the material that is responsible for cracking. In other
cases, as in the cracking of ceramic coatings, it is typically
the contraction upon cooling that generates the same phe-
nomenon. Fragmentation is known to produce a two-
dimensional pattern of cracks whose statistical properties
have been studied experimentally[1] and theoretically[2].
With some variations depending on the particular case, these
crack patterns are hierarchical structures, with younger
cracks meeting older ones perpendicularly. Then most crack
joints are “T” shaped[3], with the horizontal part being older
than the vertical part.

There is however a small number of remarkable cases in
which fragmentation crack patterns undergo a “maturation”
process. This means that starting from a hierarchical pattern
as described above, cracks can adapt smoothly to optimize
its configuration. This optimization process is driven by the
tendency of the crack pattern to reduce its mechanical(elas-
tic plus crack) energy. Special conditions have to be fulfilled
for this maturation to take place. To modify a given crack
pattern, cracks should be able to displace laterally, and this
implies typically the surmounting of enormous energy barri-
ers (although the final state has lower energy than the origi-
nal one). Particular conditions make this lateral displacement
possible in(at least) two different cases.

One is the case of crack patterns formed on the ground of
very cold regions of the earth[4], and also in other planets
[5]. In this case the frozen ground(named “permafrost”)
cracks when the rapidly fallen temperatures of winter make
the surface contract with respect to lower parts of the terrain.
This first crack pattern is of the kind described above. The

cracks get filled with new ice and debris, and when tempera-
ture rises after winter the cracks tend to close. However, the
new material that filled the cracks is weaker than the old
permafrost, and the next year cracks open almost on top of
the “scars” of first year cracks. However, small lateral varia-
tions can occur from one year to the next. There are many
reasons that can make a crack to be shifted laterally in one
direction or the other, from one year to the next. Most of
these reasons(as, for instance, inhomogeneities in the mate-
rials) are not expected to bias the shift of the crack in one
particular direction. But there is at least one reason for a
crack to shift in a particular direction, and that is the ten-
dency to reduce the energy of the crack pattern. In fact, from
a statistical point of view it is reasonable to expect the crack
pattern to adapt in order to reduce its energy. This tendency
provides a bias for the evolution of the crack pattern in per-
mafrost that over thousands of years is able to qualitatively
modify its appearance[4]. In fact, after maturation, crack
joints become more Y shaped, as this form has lower energy
than the T shaped original joints.

The second, better known and more remarkable example
of crack pattern maturation takes place in the case of colum-
nar jointing. It occurs in basaltic rocks when they cool after
its expulsion in a volcanic event[6], and also in desiccating
starch[7] driven by the shrinkage due to humidity loss. In
both realizations, a superficial pattern of cracks very much
like the one described in the first paragraph first develops in
the material. But here, this crack pattern penetrates the ma-
terial as deeper parts of it cool(or desiccate). It is this pro-
gression into the interior that allows the maturation of the
pattern to take place, now as a function of depth, reaching a
polygonal structure whose further advance defines prismatic
columns. In this case there is no true lateral movement of the
cracks. But we will make the assumption that an effective
description in terms of lateral movement can be given if we
choose a reference system that moves with the penetrating
crack front. The similarity between the results we will obtain
and those of the true three-dimensional(3D) system will
confirm that this assumption makes sense.
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We use here a recently developed model of fracture[8] to
describe crack patterns in a two-dimensional material elasti-
cally coupled to a substrate. In the original formulation of
this model cracks have to be pinned in some way in order to
avoid them to move laterally(since typically this movement
is unphysical). Here instead, we take advantage of this move-
ment (driven by the tendency to minimize the energy of the
system) to observe how an originally disordered pattern be-
comes polygonal during its maturation. We also investigate
the way in which a stable polygonal pattern is modified when
the degree of contraction is modified. We observe that some
individual cracks disappear(terminate, in the 3D language of
columnar jointing) when contraction is reduced, giving rise
to local rearrangements in the pattern. This mechanism pro-
vides a way to change the mean width of the columns as a
function of depth in the basalt formations and in starch, and
it has been observed to occur in this last case. We finish with
a discussion on what the typical width of columns in three-
dimensional formations is.

II. THE NUMERICAL MODEL

We use a technique recently developed[8] to treat fracture
and cracks in the context of phase field modeling[9]. The
free energy of the system is written in terms of the strain
tensor«i j ;1/2s]ui /]xj +]uj /]xid, with usr d being the local
displacement field. We choose the form of the free energy in
such a way that it reduces to the normal elastic energy for
small strains, but for large strains it is able to describe
cracks. This is achieved by a saturation of the free energy of
the system for large values of«i j . The inclusion in the free
energy of terms proportional to gradients of« produces a
smoothing of cracks, which although artificial, is however
very important to us. On one hand it makes the description
isotropic and insensitive to the numerical mesh we use in the
calculation(as long as the discretization is much thinner than
the smoothing distance of the fracture). On the other hand it
allows the cracks(that in the regularized theory could be
pictorially described as “solitons”) to move around the sys-
tem to find configurations of lower energy. This wandering
will model the maturation of the crack pattern. The free en-
ergy is taken to be rotationally invariant, in order to describe
cracks in an isotropic material.

To write down explicitly the equations we actually solved
in our two-dimensional geometry, we first introduce the fol-
lowing notation for the independent components of«
[10,11]:

e1 ; s«11 + «22d/2,

e2 ; s«11 − «22d/2,

e3 ; «12 = «21, s1d

which are named, respectively, the dilation, deviatoric, and
shear components. These three variables are not independent.
They satisfy the St. Venant compatibility constraint[10,11]

s]x
2 + ]y

2de1 − s]x
2 − ]y

2de2 − 2]x]ye3 = 0. s2d

The free energy density is

Fs«d =
F0s«dg

f1 + F0s«d/f0g
, s3d

where

F0s«d = Bse1 − e1
0d2 + mfse2 − e2

0d2 + se3 − e3
0d2g, s4d

and B and m are related to the two-dimensional bulk and
shear modulus of the material.ei

0sr d are externally controlled
functions that allow us to prescribe the locally preferred state
of the system, andgsr d is anotherspositived function that will
be used to model some random inhomogeneities in the sys-
tem. There is no particular significance in the exact form of
the free energys3d, apart form the fact that it has to reduce to
that of linear elasticity for small strains, and tends to a con-
stant for large strains. The chosen form is just a simple ana-
lytical interpolation between the two limits. The limiting
value f0 of F for «→` sassumingg=1d is related to the
crack energy in the model.

Regularization of cracks is provided by a gradient termFg
in the free energy density, which we choose to be of the form

Fg = o
i=1,2,3

ais=eid2, s5d

where we have to choosea2=a3 to retain rotational invari-
ance.

An additional ingredient that has to be added here with
respect to the basic model of Ref.[8] is the inclusion of the
elastic energy densityFel of the system attached to the sub-
strate. In terms of the displacement variablesu, this elastic
energy can be written in the form

E d2rFel ; gE d2r uusr du2, s6d

where g measures the stiffness of the interaction with the
substrate. As we take the components of« to be our basic
variables, we have to recast this energy in terms of these.
This can be easily done in the Fourier space, and the result is

E d2rFel = gE d2k
uẽ2skdu2 + uẽ3skdu2

k2 , s7d

where ẽiskd are the Fourier transforms of the originaleisr d.
The equations of motion are taken to be of the overdamped
form, namely,

] eisr d
] t

= − l
dF

deisr d
si = 1,2,3d, s8d

where

F =E d2rsF + Fel + Fgd. s9d

The St. Venant constraint is implemented by using a
Lagrange multiplier. No thermal disordersLangevin termd is
included and then the dynamics is fully deterministic.
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III. RESULTS

We did the simulations on a square mesh of 5123512
elements, using periodic boundary conditions. Starting from
the configuratione1sr d=e2sr d=e3sr d=0 we simulated a uni-
form and abrupt contraction of the system by takinge1

0sr d
=c, e2

0sr d=0, e1sr d=0, c=0.7. We introduce also a finite dis-
order, takinggsr d in Eq. (3) to be a random function on the
lattice, uniformly distributed between 0.75 and 1.25. We
keepB and the mesh discretizationdx as scale-fixing param-
eters, and take m=0.5B, ai =0.5Bdx2si =1,2,3d, g
=0.0025B/dx2, and f0=0.5B. Under these conditions we
solve the evolution equations. We see in Figs. 1 and 2 snap-
shots of the time evolution of the system. The figures are
done by marking the points in whiche1.eth, whereeth is
some constant threshold value. To make sense, this value
must be chosen in such a way that according to our definition
of the free energy[Eqs. (3) and (4)], the system is intact
(elastic) for e1!eth and broken fore1@eth. We have chosen
eth=0.5, and verified that the results do not change apprecia-
blly when usingeth=1. In this way we are basically plotting
the cracks present in the system. It is important to note that
due to the finite value ofai, broken elements do not form
strictly one-dimensional “strings” in the system, but they
clusterize, making cracks acquire a finite width, as it is ap-
parent in the pictures. This is a crucial point to simulate an
isotropic system.

We can distinguish two different stages in the temporal
evolution. During the nucleation stage(Fig. 1) cracks appear
rather disorderly in the system and propagate around. The
pattern that forms is very dependent on many details of the
simulation, as, for instance, the amount of disorder present
[namely, the values of the functiongsr d]. This is the kind of
pattern we have described in the Introduction as a fragmen-

tation pattern. During a second stage the maturation of the
pattern occurs(Fig. 2). This is observed as a progressive
lateral displacement of the cracks towards a configuration of
lower energy. It is necessary to emphasize again that in stan-
dard fragmentation processes this maturation cannot take
place, as cracks cannot move from their positions. In our
numerical model cracks can in fact move laterally, since this
does not imply the surmounting of a large energy barrier.

The lateral movement of cracks in our model is, however,
rather slow compared to its nucleation, and that is why it is
not seen on the time scale of the nucleation stage. We stress
that we are not forcing the crack pattern to become polygo-
nal, or cracks to terminate onto other cracks, it is the system
itself that prefers this kind of configuration as this reduces its
energy. The final, stable pattern is that at the bottom right of
Fig. 2. It corresponds to a relative minimum of the energy of
the system, the absolute minimum[for gsr d=1] being a per-
fect hexagonal pattern with a polygon size(calculated nu-
merically with the same model) as indicated also in Fig. 2.
Contrary to what happens in the nucleation stage, the evolu-
tion during the maturation process is essentially independent
of the presence of inhomogeneities(and also independent of
the presence of some thermal noise). We have checked this
by repeating the maturation process starting from the last
pattern in Fig. 1 but resetting the values of the functiongsr d
in Eq. (3) to one, namely, making the system structurally
homogeneous. The evolution observed in this case is equiva-
lent to that in Fig. 2, indicating that local defects are irrel-
evant during the maturation stage.

The mature pattern contains mostly polygons of five, six,
and seven sides, and a small number with four and eight

FIG. 1. Appearance of a typical fragmentation pattern during the
first stage of the evolution. The time scalet is given byt−1=lB.
The contraction imposed isc=0.7.

FIG. 2. Maturation of the fragmentation pattern at longer times
(note the change in time intervals with respect to previous figure).
The lateral displacements of cracks allow the system to reach a
stable state(bottom right) which is a local energy minimum. The
size of the hexagon in the perfect pattern that corresponds to the
absolute minimum of the energy is indicated.
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sides. They are statistically very similar to those in real co-
lumnar formations(see Fig. 5 below and Fig. 8 in Ref.[12]).
We note that the mean area of polygons for different number
of sides follows a linear relation, known as the Lewis law,
after he encountered it in other two-dimensional patterns
[13]. This law follows if the pattern is assumed to be maxi-
mally random[14].

The present results can be compared with those obtained
previously[12] using a phenomenological model for the en-
ergy of the cracked material. The present approach is how-
ever much more general than that in Ref.[12]. Here, we are
not assuming any phenomenological form of the energy as a
function of the areas of the polygons, the energy of the sys-
tem builds up from the free energy presented in the preced-
ing section. In addition, crack segments are not forced here
to be straight, and in fact we can see in the last panel of Fig.
2 that some of them are slightly curved. The curvature occurs
particularly when there is a large difference between the ar-
eas of polygons on both sides of the crack segment, always
curving it in the direction in which areas tend to be closer.
The reason for this is again energetic: slightly curving a
crack does not pay much crack energy, but produces a gain in
elastic energy if the areas of the two adjacent polygons tend
to become closer to each other. This curvature has been in
fact observed to occur in a full three-dimensional calculation
for a simple geometry[15].

An interesting problem to be investigated with the present
model is the way in which a stable polygonal pattern changes
when there are changes in the parameters that control the
extent of contraction. As an outcome of this analysis we will
get an idea of the expected evolution of the patterns down in
the columnar formation(after the first maturation), since the

thermal stresses in deeper parts of the material are lower than
close to the surface. Since a lower grade of contraction cor-
responds to an ideal pattern with larger polygons, we may
wonder what is the way(if any) in which one of our patterns
adapts to the new conditions. We present in Fig. 3 the results
of simulations when the extent on contractionc is reduced.
We see that there is an increase in the mean area of the
polygons whenc is reduced. The area increase is not homo-
geneous over all polygons, but occurs due to the disappear-
ance of particular crack segments, merging two(or three)
adjacent polygons into one. After the disappearance of the
crack segments there is a local rearrangement of the pattern
which adjusts to the new configurations. Those regions in
which no crack disappear remain perfectly stable despite the
change in the contraction.

The evolution of the mean areaA of the polygons as a
function ofc is shown in Fig. 4 along with the ideal areaAid

of the hexagons in the perfect hexagonal pattern of minimum
energy. We see that the evolution tends to follow that of the
ideal structure, althoughA is always smaller thanAid [16].
We note also that in the present model there is a critical value
of c s,0.42d for which Aid diverges, and we expect the same
occurs for nonideal patterns. This happens because the elas-
tic energy per unit area gained when generating a polygonal
crack pattern decays very rapidly when the size of the hexa-
gons increases sufficiently. The sum of this elastic energy
plus fracture energy may not have a minimum with respect to
the area of polygons if the degree of contractionc is too
small. Note that the same does not apply to a real three-
dimensional columnar case(see the following section).

It is remarkable that the statistical properties of the pattern
do not change appreciably during this relaxation stage. In
Fig. 5 we see that despite a change in the mean area by more
than 50%, statistical distribution of polygons by number of
sides and areas remains constant within numerical fluctua-
tions associated to the finite size of the system[17]. Note
that it is precisely the “imperfection” of the crack pattern that
makes possible the adaptation of the mean area to a condi-
tion of lower contraction. For a perfect hexagonal pattern it
is impossible to find a way to adapt the pattern slightly and
obtain another hexagonal pattern with slightly larger polygon
area. In our case the mean area of the pattern is increased by
making some crack segments between polygons disappear.

FIG. 3. (Color online) Evolution of the mature pattern of Fig. 2
(bottom right) upon reduction of the extent of contractionc. Note
the disappearance of some cracks and the local rearrangement that
occur. To facilitate the visualization we plot also the immediately
previous pattern. For the first panel the previous pattern is the last
one in Fig. 2.

FIG. 4. Evolution of the mean areaA of the polygons as a
function of the degree of contractionc, when c is reduced from
larger to smaller values, and ideal valueAid of the area of polygons
in the perfect hexagonal pattern that minimizes the energy of the
system. There is a critical value of contractionsc,0.42d below
which the uncracked configuration is the one with minimum energy.
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IV. THE PROBLEM OF THE TYPICAL COLUMN WIDTH
IN COLUMNAR FORMATIONS

The two-dimensional model we have studied is perfectly
well defined, and provides values for the size of the polygons
in the ideal hexagonal pattern that minimizes the total energy
of the system. We want to comment at this point to what
extent these two-dimensional results can be applied to the
full three-dimensional columnar problem. For a straightfor-
ward application to be possible, the elastic energy stored in a
columnarly cracked three-dimensional material should be
stored in a layer around the crack front of thicknessw, in
such a way thatw is much smaller than the typical column
width l sl ,A1/2d. If this is satisfied, the two-dimensional de-
scription is directly applicable. The only consideration to be
made is that two-dimensional variables have to be scaled
from the three-dimensional variables usingw. For instance,
the effective crack energy per unit lengthh and elastic con-
stantsB and m of the two-dimensional description are ob-
tained from the real three-dimensional values aswhs3Dd,
wBs3Dd, and wms3Dd. Unfortunately the conditionw! l is
never satisfied. In fact, the elastic energy of a columnar for-
mation is stored in a portion of thicknessw* l around the
crack front[18]. The coincidence of the statistical properties
of our two-dimensional patterns and those in true three-
dimensional cases indicates that these properties are robust
with respect to this difference. However, the calculation of
the ideal size of the perfect hexagonal pattern(and then an
estimation of the typical size of nonperfect real patterns) has
to be reconsidered for the three-dimensional case. In fact, in
our two-dimensional model, in which a layer of material is
attached to a substrate, there is an ideal hexagonal pattern of
well-defined polygon size that minimizes the energy of the
system. The application of the same principle of minimizing
the total energy leads in the three-dimensional case to non-
sense: the contribution of the fracture energy to the total
energy is always much larger than the elastic contribution. A
minimum can only be obtained with no cracks at all.

The correct way to pose the problem of the typical size of
the polygons in three dimensions is the following: in the
three-dimensional case, we have a temperature profile that

we assume to be dependent only on depthz, passing more or
less steeply fromT0 at z→−` to T1.T0 at z→`, in such a
way that a temperature front can be defined. At timet=0 the
temperature front is assumed to be located atz=0. We will
consider the idealized case in which the temperature profile
is rigidly displaced towards the interior as a function of time,

with some fixed velocityv, namely,Tsz,td=T̃sz−vtd. We as-
sume that a stable polygonal pattern of fractures has formed,
and that its front is located at some depthz0, which moves
down locked to the temperature profile, namely,z0=zr +vt,
wherezr measures the relative position of the crack pattern
and the temperature profile. The value ofzr depends mainly
on the typical size of the patternl and the overall temperature
difference DT=T1−T0. A previous stability analysis has
shown in a simplified case[18] that under the present con-
ditions, patterns with differentl can propagate in a stable
manner, withzr being a decreasing function ofl, namely,
larger patterns are more retarded with respect to the tempera-
ture front. However there is a limit to this stable propagation.
If l or DT are too small, the crack front becomes unstable:
not all cracks can propagate. It is tempting to argue(and this
is also based upon what is observed in three-dimensional
starch samples, see below) that in this case some crack seg-
ment will remain halted, and the rest of the pattern propa-
gates. In this wayl is effectively increased and the crack
front becomes closer to the temperature front, in such a way
that the new pattern is now stable. In a situation in whichDT
decays smoothly with time(whereas at the same time the
front penetrates the material), we may expect that the pattern
will always be located at the valuezcr that marks the limit
between stable and unstable propagation. This is the condi-
tion that determines the size of the columns in terms of the
temperature profile, the elastic properties of the material and
the crack energy. For the case of a sharp temperature jump
and generalizing the two-dimensional expressions for elastic
and fracture energy in Ref.[18], we obtain that the crack
front is located precisely at the border between stable and
unstable regions whenBsaDTd2l /h is some constant valuek
of order unity(this value is not easy to calculate). Herea is
the thermal expansion coefficient andB is a typical elastic
constant of the material. From here we obtain the typical
width of the columns as

l = k
h

B
saDTd−2. s10d

The typical size is then positively correlated to the crack
energy and negatively correlated with the elastic stiffness of
the material, both facts being qualitatively reasonable. The
sizel is also proportional to the negative second power of the
temperature jump responsible for cracking. We should keep
in mind, however, that this result is valid only for the as-
sumed sharp step form of the temperature profile. In other
cases we should search for the critical position of the crack
front zcr along the lines used in Ref.f18g. Note thataDT
plays in three dimensions the role of the degree of contrac-
tion c in our simulations. The preceding formula indicates
that the typical size of polygons diverges only whenaDT
→0, contrary to the critical value ofc we found in two

FIG. 5. (a) Frequency of polygons with different number of
sides and(b) mean area of polygons with different number of sides
(normalized to the mean area of all polygons) for patterns obtained
by reducingc.
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dimensionsssee Fig. 4d. This would indicate that if the driv-
ing force for cracking is slowly reduced when going deeply
into the materialsas may occur due to the higher difficulty to
expel heat—or humidity in starch—through the upper mate-
riald the size of the pattern should adapt by increasing their
typical size, but it would never stop abruptly.

Recent tomography experiments in starch samples[19]
show that termination and rearrangement of cracks seem to
be in fact the main mechanism by which the polygonal pat-
tern evolves in depth. In starch samples the humidity gradi-
ents are expected to be reduced when going deeper into the
sample, and that is why the typical width of the columns
tends to increase. However, a quantitative verification of a
relation such as Eq.(10) (or the equivalent one for a more
realistic time dependent temperature or humidity profile) is
not possible at present as it would require the in situ deter-
mination of the temperature profile under which the cracks
form, and not only the observationa posteriori of column
thickness as a function of depth.

V. CONCLUSIONS

We have studied numerically the formation and matura-
tion process of a two-dimensional crack pattern that is al-

lowed to adapt to find configurations of minimum energy.
The original cracks appear in a rather disordered way, but the
pattern naturally evolves towards a polygonal configuration
with well defined statistical properties. We argue that this
maturation process occurs in crack patterns on the ground of
arctic regions(permafrost) and effectively in the columnar
jointing of basalts and starches, as a function of depth. Our
model allows also to study the evolution of mature polygonal
patterns when the extent of contraction is reduced. We have
found that in this case the pattern adapts by closing(“termi-
nating” in the three-dimensional interpretation) some cracks
and rearranging those cracks in the immediate neighborhood.
This evolution has been recently observed to occur in starch
samples. Although it does not contain all features of the full
three-dimensional problem, our approach produces patterns
of very good statistical agreement with real ones. The issue
of the typical scale of the three-dimensional pattern is be-
yond the reach of the two-dimensional model, and we have
provided for this case a plausible description that relates the
typical size of the polygons with the elastic and thermal
properties of the material, and with the details of the tem-
perature profile.
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